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Inviscid transonic flow over the DSMA523a and Whitcomb airfoils and an airfoil described by a simple alge-
braic formula has been investigated numerically. The dependence of the flow structure and the lift coefficient
on the freestream Mach number M∞ and the angle of attack α has been studied. The values of M∞ and α at
which steady-state flow becomes unstable have been revealed. The relationship between the flow nonunique-
ness occurring in certain ranges of variation of M∞ and α and the instability has been analyzed.

A local supersonic zone is formed near the airfoil for large subsonic freestream Mach numbers M∞. If the
curvature of the airfoil has a minimum in the vicinity of its midchord, two or more supersonic zones adjacent to its
upper and lower sides can be formed. The existence of singular Mach numbers Ms that trigger abrupt changes in the
flow structure — either the merging of supersonic regions or their splitting into smaller-size subregions — has been
established in [1, 2]. Consideration was given to flow in a channel with a bump modeling an airfoil at the zero angle
of attack. Unbounded flow over symmetric airfoils has been investigated in [3] and the relationship between structural
instability occurring for M∞ = Ms and the nonuniqueness of steady-state flow has been analyzed. In this work, an
analogous study has been made of two nonsymmetric airfoils developed by NASA and McDonnell Douglas about
thirty years ago and of a model nonsymmetric airfoil described by a simple algebraic formula.

Numerical Method. To find the steady-state solutions of the Euler equations we have employed a relaxation
method in which unsteady solutions have been calculated using the NSC2KE code based on the finite-volume method
[4]. In the code, Van Albada-type limiters are employed [5]. Time integration is carried out using the explicit four-
point Runge–Kutta scheme. Numerical modeling of the conditions on the inlet and outlet portions of the external
boundary includes the employment of the Steger–Warming flux-splitting scheme [6]. A classical slip condition is em-
ployed as the boundary condition on the airfoil. The Mach number M∞ < 1 and the angle of attack α are prescribed
at the external boundary of the computational domain. The initial data are the parameters of the freestream homogene-
ous flow or the steady-state flow obtained for other M∞ and α.

The structure of transonic flow has been investigated on a nonuniform 733 × 215 C-grid composed of trian-
gular elements clustering near the airfoil and in the region of shock waves. The external boundary of the computa-
tional domain was at a distance R = 15 from the airfoil. Test calculations on a coarser grid showed that the error in
determining the position of the shock waves significantly increased. On the other hand, the employment of finer grids
did not result in a considerably improved accuracy of calculations but substantially increased the amount and time of
computations necessary for obtaining steady-state flow. Evaluation of the computational program involved the calcula-
tion of transonic flow in the channel and comparison of these results to the data obtained using the ENO2 scheme [2].
Furthermore, we calculated nonsymmetric flow over the airfoil with a flat central part at α = 0; the calculations
showed that the found dependence of the lift coefficient CL on M∞ virtually coincides with the data of [7]. Finally,
we calculated flow over the Whitcomb airfoil for the angle of attack α = 4o. When M∞ < 0.7 the dependence
CL(M∞) was in good agreement with the results obtained in [8] using the FLUENT code. The noticeable difference in
the results for M∞ > 0.7 was due to the increase in the strength of the shock waves and, as a consequence, the sepa-
ration of the boundary layer, which was disregarded in this work.

Flow about the Whitcomb Airfoil. The first series of calculations was performed for the Whitcomb airfoil
[9] at α = −1.5o in the range 0.760 < M∞ < 0.785. They have shown that two supersonic zones are realized on the

Journal of Engineering Physics and Thermophysics, Vol. 77, No. 5, 2004

aSt. Petersburg State University, 28 Universitetskii Ave., Petrodvorets, St. Petersburg, 198504, Russia; email:
alexander.kuzmin@pobox.spbu.ru; bA. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of
Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus; email: ivanova-a@tut.by. Translated from Inzhenerno-Fizicheskii
Zhurnal, Vol. 77, No. 5, pp. 134–138, September–October, 2004. Original article submitted December 18, 2003.

1062-0125/04/7705-1022  2004 Springer Science+Business Media, Inc.1022



upper side of the airfoil when M∞ = 0.7748; these zones merge into a single zone when M∞ > 0.7748. Thus, a singu-
lar Mach number Ms C 0.7748 beyond which we have flow restructuring exists. Figure 1 gives the flow pattern that is
formed for M∞ = 0.7748+ (i.e., when M∞ approaches the singular Mach number from above). On the other hand, if
M∞ tends to Ms from below, a flow pattern with two supersonic regions separated by a distance of 0.03 is realized.

In the vicinity of the singular Mach number Ms, flow is very sensitive to variation of the angle of attack, e.g.,
for M∞ = 0.7749 a decrease from −1.5o to −1.6o in α leads to a splitting of the supersonic region into two subregions.
This process evolves with time so that a third concave portion appears in the vicinity of the end of the sonic line; this
portion rapidly shifts upstream and merges with the second concave portion, making it deeper, with the result that the
supersonic region is split. A return to the initial angle α = −1.5o leads to a restoration of flow with one supersonic
zone.

In the vicinity of the Mach number Ms, flow is also sensitive to small changes in the geometry of the airfoil.
In particular, for M∞ = 0.7749 and α = −1.5o a change in the ordinates of the tail portion 0.9 < x < 1.0 by ∆y(x) =
0.01 (x − 0.9) (so that the height of the airfoil at the endpoint x = 1 becomes equal to yend = 0 instead of yend =
−0.001) leads to a restructuring of the flow. The supersonic region on the upper surface is split into two subregions.
A return to the initial airfoil (yend = −0.001) leads to a merging of these subregions into one region.

At the angle of attack α = −2.5o, we observe three singular Mach numbers Ms = 0.7665, 0.7735, and 0.7863
corresponding to the merging and splitting of the supersonic zones on the upper surface (Fig. 2, curve 2). In this fig-
ure and in Fig. 4, the regimes of flow with different numbers of supersonic zones near the airfoil are marked by sym-
bols (triangles and dots); these zones are sketched by the dashed curves on the schemes given near the corresponding
portions of the plots; the airfoil is shown in gray.

Fig. 1. Mach number isolines over the Whitcomb airfoil for M∞ = 0.7748+

and α = −1.5o.

Fig. 2. Lift coefficient CL vs. M∞ for the Whitcomb airfoil: 1) α = −1.5o and
2) −2.5o.
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Whitcomb Airfoil with a Flap. Let us consider a modification of the Whitcomb airfoil, realized through
changing the ordinates of the upper and lower surfaces by ∆y(x) = 0.13 (x − 0.9) and 0.9 < x < 1.0. The height of the
endpoint of the airfoil yend increases from 0.001 to 0.012. The above modification in essence corresponds to the rota-
tion of the trailing portion (flap) of length 0.1 through an angle of 7.45o counterclockwise.

The calculations of flow about such an airfoil with the flap deflected upward have shown that regimes in
which two supersonic zones are formed on both the upper and lower surfaces exist (Fig. 3). As M∞ increases, we ob-
serve, at a constant angle of attack, a decrease in the second supersonic zones and their shift downstream followed by
their disappearance.

If the Mach number M∞ = 0.810 is fixed, we have the convergence of supersonic zones on the lower surface
with increase from −1.1o to −0.5o in α and their merging at αs1 C −0.4o. As α decreases from −1.1o to −1.4o, the sec-
ond supersonic zone shifts downstream, contracts to a point on the airfoil, and disappears. The dependence of CL on
α for this case is presented in Fig. 4. On the upper surface, we have a decrease in the second supersonic zone and its
disappearance with increase from −1.1o to −0.85o in α and the merging of supersonic zones as α decreases to
αs2 C −1.9o. As is clear from the plot, the dependence of CL on the angle of attack is linear in character, despite the
changes in the flow structure at αs1 and αs2.

With a stronger deflection of the flap ∆y(x) = 0.15 (x − 0.9), when yend increases to 0.014, the flow velocity
on the upper surface decreases and the height of the supersonic zones decreases. On the lower side, the length of the
first zone increases, whereas the second supersonic zone contracts to a point and disappears. The downward deflection
of the flap so that yend decreases from 0.012 to 0.009, conversely, leads to an expansion of the first supersonic region
and disappearance of the second region on the upper surface and to a decrease in the two supersonic regions on the
lower surface.

Fig. 3. Mach number isolines at M∞ = 0.810 and α = −1.1o for the modified
Whitcomb airfoil with yend = 0.012.

Fig. 4. Lift coefficient CL vs. angle of attack at M∞ = 0.810 for the modified
Whitcomb airfoil with yend = 0.012.
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Other Airfoils. The calculations of flow over the DSMA523a airfoil [9] have led to analogous results, e.g.,
for M∞ = 0.7742 and α = −1.5o the boundary of the supersonic zone formed on the upper surface has three concave
portions (Fig. 5) that are more pronounced here than in Fig. 1. With decrease in M∞ we have splitting of the super-
sonic zone into two portions, which is accompanied by an abrupt change in CL, just as in the case of flow about the
Whitcomb airfoil.

The model asymmetric airfoil

  y (x) = (− 1)m
 0.06 √1 − (2x − 1)4  (1 − x

10)m
 ,   0 ≤ x ≤ 1 ,

where m = 2 for the upper surface and m = 3 for the lower surface, has a smaller curvature in the central part than
the Whitcomb and DSMA523a airfoils. Therefore, structural instability is more pronounced here. The calculations of
the lift coefficient at α = −0.3o have shown that the plot of CL as a function of M∞ consists of four branches (Fig.
6). Transition from one branch to another can be carried out by prescribing a certain disturbance for the angle of at-
tack at a fixed M∞ and then by return to α = −0.3o.

On the other hand, if the Mach number M∞ increases from 0.8140 to 0.8228 at a constant α = −0.3o, we ob-
serve the convergence of two supersonic zones on both the upper and lower surfaces. The convergence is very bal-

Fig. 5. Mach number isolines over the DSMA523a airfoil for M∞ = 0.7742 and
α = −1.5o.

Fig. 6. Lift coefficient CL vs. M∞ for the model airfoil at α = −0.3o. Different
branches correspond to the flow patterns with different numbers of supersonic
zones over the airfoil: 1) two zones on each of the two surfaces; 2) two zones
on the lower surface and one zone on the upper surface; 3) one zone on each
on the two surfaces; 4) one zone on the lower surface and two zones on the
upper surface.

1025



anced in character, and the state of the flow on both sides of the airfoil turns out to be at the stability boundary for
M∞ = 0.8228. If we now increase M∞ to 0.8233, we observe the merging of supersonic zones on the upper surface.
Accordingly the transition from branch 1 of the CL(M∞) plot to branch 2 occurs (Fig. 6). As M∞ increases further, we
have the transition to branch 3 (which is determined by the merging of supersonic zones on the lower surface).

If M∞ is increased from 0.8224 immediately to 0.8255 (at α = −0.3o), the merging of supersonic zones on
both surfaces occurs and the transition from branch 1 to branch 3 is carried out. As M∞ gradually decreases from
0.830 to 0.814, the transition from branch 3 to branch 2 (as a result of the splitting of supersonic zones on the lower
surface) and next to branch 1 (due to the splitting of supersonic zones on the upper surface) is realized. The transition
from branch 1 or 2 to branch 4 can be carried out by decreasing the angle of attack, for example, to α = −0.6o, fol-
lowed by restoration of α = −0.3o.

In the range 0.8190 < M∞ < 0.8258, we have nonuniqueness of steady-state flow patterns that are stable to per-
turbations for all M∞, except for those values of the Mach number that correspond to the endpoints of branches 2 and
4 and to the right end of branch 1 and the left end of branch 3. An analogous situation has been studied in [3] for
certain symmetric airfoils but, unlike Fig. 6, the distance between branches 1 and 3 was very small.

We note that the jumps (obtained above for the Whitcomb and DSMA523a airfoils) in the coefficient CL, as
M∞ goes across Ms or α goes across αs, are comparatively small. No M∞ range in which steady-state flow would be
nonunique has been found for these airfoils. At the same time, with allowance for the viscosity of the flow, structural
instability can increase in importance (because of the influence of the displacement thickness on the curvature of
streamlines) and be comparable to that revealed for the model airfoil.

This work was carried out with financial support from the Russian Foundation for Basic Research, grant No.
03-01-00799.

NOTATION

CL, lift coefficient; M∞, freestream Mach number; Ms, singular Mach number; x, y, Cartesian coordinates; R,
chord length; yend, height of the endpoint of the airfoil; ∆y, increment of the ordinate; α, angle of attack, deg; αs, sin-
gular value of the angle of attack, deg. Subscripts: end, end; L, lifting force; s, singular; ∞, infinitely remote point.
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